Where Artificial Intelligence Could Take Agriculture

— Written By
en Español / em Português

El inglés es el idioma de control de esta página. En la medida en que haya algún conflicto entre la traducción al inglés y la traducción, el inglés prevalece.

Al hacer clic en el enlace de traducción se activa un servicio de traducción gratuito para convertir la página al español. Al igual que con cualquier traducción por Internet, la conversión no es sensible al contexto y puede que no traduzca el texto en su significado original. NC State Extension no garantiza la exactitud del texto traducido. Por favor, tenga en cuenta que algunas aplicaciones y/o servicios pueden no funcionar como se espera cuando se traducen.


Inglês é o idioma de controle desta página. Na medida que haja algum conflito entre o texto original em Inglês e a tradução, o Inglês prevalece.

Ao clicar no link de tradução, um serviço gratuito de tradução será ativado para converter a página para o Português. Como em qualquer tradução pela internet, a conversão não é sensivel ao contexto e pode não ocorrer a tradução para o significado orginal. O serviço de Extensão da Carolina do Norte (NC State Extension) não garante a exatidão do texto traduzido. Por favor, observe que algumas funções ou serviços podem não funcionar como esperado após a tradução.


English is the controlling language of this page. To the extent there is any conflict between the English text and the translation, English controls.

Clicking on the translation link activates a free translation service to convert the page to Spanish. As with any Internet translation, the conversion is not context-sensitive and may not translate the text to its original meaning. NC State Extension does not guarantee the accuracy of the translated text. Please note that some applications and/or services may not function as expected when translated.

Collapse ▲

Ben Sheldon | Indiana Prairie Farmer | 10/17/2018

Typically, when AI is brought up around farmers, the conversation turns to how many brood cows they covered this year for breeding. In this article, AI refers to artificial intelligence.

The ability to capture data on the farm has never been more readily available than it is today. Many questions about how to use and implement data are daunting and prevent producers from moving beyond the comfort of basic yield monitors and autosteer.

To make the leap into data management less daunting, original equipment manufacturers (OEMs) and farm management information system groups have shifted their attention toward taking some of the burden out of making data-based decisions by using machine learning algorithms.

An example of machine learning algorithms can be found in the model year 2019 New Holland combine, which made its debut at the Agritechnica farm show in 2017. The New Holland combine development team announced the patented proactive and automatic combine feature described below and commercialized as the IntelliSense system for the CR Revelation range of combine harvesters.

The Field and Yield Prediction System is a self-learning tool that predicts changes in slope and crop density in front of the combine. It uses topology data to anticipate conditions ahead of the header. To predict the yield ahead of the combine, it extrapolates the yield of the adjacent passes already harvested and the GPS yield mapping data of previous passes programmed into the combine. The automation system proactively optimizes the settings accordingly.

Read the full article.